In this lesson, we will learn how to train a Naive Bayes classifier and a Logistic Regression classifier - basic machine learning algorithms - on JSON text data, and classify it into categories.
While this dataset is still considered a small dataset -- only a couple hundred points of data -- we'll start to get better results.
The general rule is that Logistic Regression will work better than Naive Bayes, but only if there is enough data. Since this is still a pretty small dataset, Naive Bayes works better here. Generally, Logistic Regression takes longer to train as well.
This uses data from Ana Cachopo: http://ana.cachopo.org/datasets-for-single-label-text-categorization.
// train data[{text: 'xxxxxx', label: 'space'}]
// Load train data form the files and trainvar natural = require('natural');var fs = require('fs');var classifier = new natural.BayesClassifier();fs.readFile('training_data.json', 'utf-8', function(err, data){ if (err){ console.log(err); } else { var trainingData = JSON.parse(data); train(trainingData); }});function train(trainingData){ console.log("Training"); trainingData.forEach(function(item){ classifier.addDocument(item.text, item.label); }); var startTime = new Date(); classifier.train(); var endTime = new Date(); var trainingTime = (endTime-startTime)/1000.0; console.log("Training time:", trainingTime, "seconds"); loadTestData();}function loadTestData(){ console.log("Loading test data"); fs.readFile('test_data.json', 'utf-8', function(err, data){ if (err){ console.log(err); } else { var testData = JSON.parse(data); testClassifier(testData); } });}function testClassifier(testData){ console.log("Testing classifier"); var numCorrect = 0; testData.forEach(function(item){ var labelGuess = classifier.classify(item.text); if (labelGuess === item.label){ numCorrect++; } }); console.log("Correct %:", numCorrect/testData.length); saveClassifier(classifier)}
function saveClassifier(classifier){ classifier.save('classifier.json', function(err, classifier){ if (err){ console.log(err); } else { console.log("Classifier saved!"); } });}
In a new project, we can test the train result by:
var natural = require('natural');natural.LogisticRegressionClassifier.load('classifier.json', null, function(err, classifier){ if (err){ console.log(err); } else { var testComment = "is this about the sun and moon?"; console.log(classifier.classify(testComment)); }});